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SUMMARY

Taking body forces into account is not new for the lattice Boltzmann method, yet most of the existing
approaches can only treat steady and uniform body forces. To manage situations with time- and space-
dependent body forces or source terms, this paper proposes a new approach through theoretical derivation
and numerical verification. The method by attaching an extra term to the lattice Boltzmann equation is
still used, but the expression of the extra term is modified. It is the modified extra term that achieves
the particularity of the new approach. This approach can not only introduce unsteady and non-uniform
body forces into momentum equations, but is also able to add an arbitrary source term to the continuity
equation. Both the macroscopic equations from multi-scale analysis and the simulated results of typical
examples show that the accuracy with second-order convergence can be guaranteed within incompressible
limit. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

As a new scheme for simulating fluid flows, the lattice Boltzmann method (LBM) has been
effectively applied to model many fluid flow phenomena, Newtonian or non-Newtonian, multi-
component or multi-phase, compressible or incompressible, and has been applied successfully to
technical simulations, such as aerodynamic, aeroacoustic, thermodynamic, chemical reactive and
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hydraulic problems [1–10]. The rapid increase in the number of published works on LBM in recent
years boosts the perspective of practical applications.

In some simulations, for example, the simulation of water waves, gravitational or body force
is important and should be considered. To yield correct macroscopic momentum equations with
specific body forces, some modifications to LBM have been proposed [11–13]. In [11], a simple
extra term was attached to the right side of the lattice Boltzmann equation (LBE), and from
the modified LBE the Navier–Stokes (NS) equations with the exact force term were derived. The
feasibility and accuracy of this particular approach were verified by analytical solutions of the force-
driven Poiseuille flow and the Couette flow. In [12], a more detailed derivation of the LBM model
with a force term was conducted from the Enskog equation, and a second-order expression of the
discretized lattice force function was presented. More specially, Buick and Greated [13] reviewed
the gravity in LBM, and analysed four methods to modify the fluid momentum, which includes
combining the gravity term with the pressure tensor, calculating the equilibrium distribution with
an altered velocity, adding an additional term to LBE, as well as the composition of the former
three. Following the methods in [12, 13], Li and Kwok [14] proposed a high Reynolds number
LBM with external forces for microfluidics, Guo et al. [15] analysed the effects of discrete
lattice on the force term in LBM, Chen et al. [16] compared the accuracy of two types of force
term functions, and Lu and Zhan [17] introduced analogous approaches into the finite difference
LBM.

All the above works are profound and valuable, however, there are a few of them capable of
treating unsteady and non-uniform forces with a convergence higher than a first order, because
in the above-mentioned works the acceleration is viewed as constant in analysis. But in practical
simulations, the space- and time-dependent forces in the fluid momentum often encounter, for
instance, frictional loss of head in the water hammer simulation [9] and resistance in the shallow
water wave simulation [10], which are all unsteady or non-uniform. On the other hand, when
there are discharge inflows or outflows in the middle of an open channel flow [18], a source term
in the continuity equation may appear. Another typical example of an unsteady and non-uniform
force exists in the immersed boundary method [19], a fluid–structure interaction (FSI) model for
biological problems. In the immersed boundary method, LBM has been utilized to model the fluid
simulation part [20] due to its superior efficiency. To be suitable for fluid–structure coupling, the
ability to accurately deal with the unsteady and non-uniform force imposed on the fluid by the
structure must be provided. Unfortunately, the only work on the variable body force or source term
in LBM to date might be [21], in which a specific set of equations with source terms was solved
by adding a case-dependent extra term to LBE. Because the method in [21] is not suitable for the
above-mentioned problems, it is necessary to find a new approach.

In this paper, a general approach to consider the unsteady and non-uniform source terms in the
momentum and continuity equations of fluid flow by LBM is proposed. The theoretical derivation
will be presented in the next section, and the typical example verification will be conducted in the
third section.

2. THEORETICAL DERIVATION

To present the proposed approach logically, errors of a typical existing approach will be analysed
at first, and then the new idea will be elucidated based on the derivation and prepared associated
formulae.
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2.1. Errors using the existing approach

One of the most common approaches to consider the effect of body forces is by attaching an
additional term to the standard LBE, such as in [11]

f�(x + e��t , t + �t ) − f�(x, t) = −1

�
[ f�(x, t) − f (0)

� (x, t)] + �t g�(x, t) (1)

where f� is the particle velocity distribution function along the �th particle velocity direction,
f (0)
� the equilibrium distribution function, g� the forcing term function, � the relaxation factor, e�

the discrete particle vector, x the lattice grid and �t the time increment. All the distribution and
equilibrium distribution functions are the same as those without body force, and the only difference
to the standard LBE is that lattice force function g� is added in (1).

Equation (1) is very convenient to be used and quite accurate for steady source term situations
[3]. However, it may lead to errors when unsteady or non-uniform source terms are considered. To
prove this, the corresponding macroscopic equations of (1) will be derived based on the Chapman–
Enskog expansion procedure as in [1, 22].

The distribution function and time differential may be expressed as the expansions with Knudson
number ��1, as follows:

f� = f (0)
� + � f (1)

� + �2 f (2)
� + O(�3),

�
�t

= �
�t0

+ �
�

�t1
+ �2

�
�t2

+ O(�3) (2)

If the density and momentum are defined as

�= ∑
�

f� = ∑
�

f (0)
� , �ui = ∑

�
e�i f� = ∑

�
e�i f

(0)
� (3)

one can find ∑
�

f (n)
� = 0,

∑
�
e�i f

(n)
� = 0 (n = 1, 2, . . .) (4)

where i is the indication of i th direction of the coordinates.
Through the Taylor expansion of the left side of (1), one may obtain:

�t

(
�
�t

+ e� j
�

�x j

)
f� + 1

2
�2t

(
�
�t

+ e� j
�

�x j

)2

f� + O(�3t ) = −1

�
( f� − f (0)

� ) + �t g� (5)

Inserting (2) into (5) and assuming �t = �, one may get the �-order scale equation(
�

�t0
+ e� j

�
�x j

)
f (0)
� = −1

�
f (1)
� + g� (6)

and �2-order scale equation:

�
�t1

f (0)
� +

(
1 − 1

2�

)(
�

�t0
+ e� j

�
�x j

)
f (1)
� + 1

2

(
�

�t0
+ e� j

�
�x j

)
g� = −1

�
f (2)
� (7)

Considering (4), the summation of (6) and summation of (6) · e�i over � can result in

��

�t0
+ �(�u j )

�x j
= A (8)
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�(�ui )

�t0
+ ��(0)

i j

�x j
= Bi (9)

in which

A= ∑
�
g�, Bi = ∑

�
e�i g�, �(0)

i j = ∑
�
e�i e� j f

(0)
� (10)

Similarly, the summations of (7) and (7) · e�i over � yield

��

�t1
+ 1

2

(
�A
�t0

+ �Bj

�x j

)
= 0 (11)

�(�ui )

�t1
+

(
1 − 1

2�

)
�

�x j
�(1)

i j + 1

2

(
�Bi
�t0

+ �Ci j

�x j

)
= 0 (12)

where

Ci j = ∑
�
e�i e� j g�, �(1)

i j = ∑
�
e�i e� j f

(1)
� (13)

Following the same derivation procedure of the standard LBM model, one can get

�(0)
i j =C2

s ��i j + �uiu j (14)

and

�(1)
i j =−�{ 23�Si j + (C2

s A)�i j + (ui B j + u j Bi − Ci j )} + O(M3) (15)

in which Si j = 1
2 (�ui/�x j + �u j/�xi ).

Therefore, combination of (8) + � × (11) and (9) + �× (12) with �= �t can result in

��

�t
+ �(�u j )

�x j
= A − 1

2

(
�A
�t0

+ �Bj

�x j

)
�t + O(�2t ) (16)

�(�ui )

�t
+ �(�uiu j )

�x j
= Bi − �p

�xi
+ 2�

�
�x j

(�Si j ) + 3�
�(C2

s A)

�xi
− 3�

�Ci j

�x j

+3�
�

�x j
(u j Bi + ui B j )−1

2

(
�Bi
�t0

+�Ci j

�x j

)
�t+O(�2t )+O(M3) (17)

where p=C2
s �, � = ((2� − 1)/6)�t , C2

s = 1
3 and M the Mach number.

Equations (16) and (17) are the corresponding macroscopic equations of (1). For steady and
uniform source term situations, the derivatives of A, Bi and Ci j are zero, and therefore the extra
terms, i.e. the second term on the right side of (16) and the fourth to seventh terms on the right
side of (17), should be zero. That is to say, the LBE (1) can approximate NS equations with a
second-order accuracy in incompressible limit as long as the source terms are steady and uniform.
This is why the existing approach is accurate for steady and uniform body forces. But for situations
when source terms are unsteady or non-uniform, the extra terms in Equations (16) and (17) will
result in errors, even though the errors may be neglectable sometimes.
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2.2. The new approach

To eliminate the error terms in (16) and (17), a modification to LBE (1) should be made. In the
new approach, the LBE with source term effect is rewritten as:

f�(x + e��t , t + �t ) − f�(x, t) = −1

�
[ f�(x, t) − f (0)

� (x, t)]

+�t
2

[g�(x, t) + g�(x + e��t , t + �t )] (18)

Accordingly, Equation (5) becomes:

�t

(
�
�t

+ e� j
�

�x j

)
f� + 1

2
�2t

(
�
�t

+ e� j
�

�x j

)2

f� + O(�3t )

=−1

�
( f� − f (0)

� ) + �t g� + �2t
2

(
�
�t

+ e� j
�

�x j

)
g� (19)

Therefore, the g� terms in (7) can be counteracted, and (7) changes to:

�
�t1

f (0)
� +

(
1 − 1

2�

) (
�

�t0
+ e� j

�
�x j

)
f (1)
� =−1

�
f (2)
� (20)

As a result, (11) and (12) become:

��

�t1
= 0 (21)

�(�ui )

�t1
+

(
1 − 1

2�

)
�

�x j
�(1)

i j = 0 (22)

If we specially redefine

A= ∑
�
g�, Bi = ∑

�
e�i g�, Ci j = ∑

�
e�i e� j g� = ui B j + u j Bi + C2

s A�i j (23)

then, Equations (16) and (17) change to:

��

�t
+ �(�u j )

�x j
= A + O(�2t ) (24)

�(�ui )

�t
+ �(�uiu j )

�x j
= Bi − �p

�xi
+ 2�

�
�x j

(�Si j ) + O(�2t ) + O(M3) (25)

Obviously, (24) and (25) approximate the incompressible NS equations with a second order of
convergence.
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At this stage, the new approach may be defined as: utilizing LBE (18), satisfying constraints (23)
and achieving the corresponding macroscopic equations (24) and (25).

The expression of g� for a specific lattice Boltzmann model can be determined based on the
constraints in (23). For example, considering the typical two-dimensional model D2Q9 and typical
three-dimensional model D3Q15 in Reference [1], g� may take the form

g� =w�{A + 3B · [(e� − u) + 3(e� · u)e�]} (26)

in which

w� =

⎧⎪⎪⎨
⎪⎪⎩

4
9 , � = 0

1
9 , � = 1, 2, 3, 4

1
36 , � = 5, 6, 7, 8

for D2Q9 and w� =

⎧⎪⎪⎨
⎪⎪⎩

2
9 , � = 0

1
9 , � = 1, 2, . . . , 6

1
72 , � = 7, 8, . . . , 14

for D3Q15

Because Equation (18) is implicit owing to g�(x + e��t , t + �t ), an iteration procedure should
be used at each time march step.

3. NUMERICAL VERIFICATION

3.1. Description of a verification example

To verify the above theoretical derivation, the selected benchmark examples should have analytical
solutions or highly accurate numerical solutions. Therefore, the steady and unsteady flows in a
three-dimensional duct are specially designed and simulated in this section. As shown in Figure 1,
the duct has a constant width, with height varying in the third direction. This example is typical
because when the flow is projected to the x1x2 plane, the governing equations of the flow in
two-dimensional form will have unsteady and non-uniform source terms for both continuity and

h2

h1

h

l

b

x1

x2

x3

p

o

projection on x1x2 plane

inlet outlet

periodic sides

bb

Figure 1. Schematic of the duct flow.
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momentum equations, which may be expressed as [23]
��

�t
+ �(�u j )

�x j
=−a j

h
(�u j ) (27)

�(�ui )

�t
+ �(�uiu j )

�x j
=− �p

�xi
+ 2�

�
�x j

[
�

(
Si j − 1

3
Skk�i j

)]
− a j

h
(�uiu j ) (28)

in which a j = �h/�x j , j = 1, 2 and h is the height of the duct. It can be seen that −(a j/h)(�u j )

is the source of the continuity equation and −(a j/h)(�uiu j ) is the source of the momentum
equation. These two terms depend on both space and time. Apart from these, Equations (27) and
(28) are the exact standard NS equation set.

It is noticeable that Equation (28) has Skk in the viscosity term, but the corresponding momentum
equation (25) in the above section does not. In order to conduct the comparison between the LBM
simulations and the analytical solutions of the duct flow problem conveniently, Skk in (28) is
omitted in the following analysis.

Considering the two periodic sides, the flow can be uniform in the x2-direction, therefore, the
flow becomes one-dimensional. If incompressibility is further assumed, the governing equations
with Skk omitted change to [23]:

�p
�t

+ C2
2
�(�0u)

�x
=−C2

2�0u

h

�h
�x

(29)

�(�0u)

�t
+ �(�0u

2)

�x
=−�p

�x
+ 2��0

�2u
�x2

− �0u
2

h

�h
�x

(30)

Though one-dimensional, this example may be the most suitable example we find for verification.
It has unsteady and non-uniform source terms, especially, one can obtain analytical solutions for
it, which are necessary for convergence analysis of a numerical scheme.

3.2. Steady flow

In a steady condition, (29) and (30) may reduce to:

�u
�x

= u

h

�h
�x

(31)

�0
�
�x

(
u2

2

)
=−�p

�x
+ 2��0

�2u
�x2

(32)

Subsequently, with inlet height h1, outlet height h2 and slope �h/�x = a = const are specified, one
may obtain the analytical solutions

u(x)= h2u2
h1 + ax

(33)

p(x)= p1 + �0h2u2
2

(h2u2 + 4�a)

[
1

h21
− 1

(h1 + ax)2

]
(34)

in which u is the velocity and p is the pressure.
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Table I. Comparison of LBM and analytical results of steady duct flow.

Parameters Results

Cases �0 � h1 h2 a p1 u2 Methods p2 u1

A 1.0 3.0 1.0 1.2 0.01 1.0 0.1
Analytical
Simulated

1.00440000
1.00423727

0.12000000
0.12000036

B 1.0 3.0 1.0 1.2 0.01 1.0 −0.1
Analytical
Simulated

1.00000000
1.00016275

−0.12000000
−0.12000036

C 1.0 2.0 1.0 1.4 0.02 1.0 0.1
Analytical
Simulated

1.01028571
1.00978433

0.14000000
0.14000245

D 1.0 1.0 1.0 0.4 −0.03 1.0 0.1
Analytical
Simulated

1.00840000
1.00763000

0.04000000
0.03999435

E 1.0 0.3 1.0 0.4 −0.03 1.0 0.1
Analytical
Simulated

0.99958000
0.99934646

0.04000000
0.03999443

F 1.0 2.0 1.0 1.4 0.02 1.0 0.01
Analytical
Simulated

1.00059657
1.00059442

0.01400000
0.01400025

Model D2Q9 is used to simulate the problem through the two-dimensional approach. Source
terms A=−(a j/h)(�u j ) and Bi = −(a j/h)(�uiu j ) are chosen. The simulation domain is dis-
cretized by a lattice resolution of 20 in the x-direction and 10 in the y-direction. For boundary
conditions, pressure, velocity and periodic condition are specified at the inlet, outlet and both
lateral sides, respectively.

Table I presents the results of model D2Q9, compared with the analytical solution of formu-
lae (33) and (34). Six cases of different parameters are chosen to analyse the effects of different
a, � and u2.

3.2.1. Analysis of influence on accuracy. Case A is selected to test the expansion flow with a
moderate a = 0.01, while Case B is selected to test the contraction flow. The two cases are the
same in geometry, and the only difference is in the flow direction of inlet velocity u2. Comparing
the simulated results with the analytical results, one knows that p2 errors are in the 10−3 degree
and u1 errors in the 10−6 degree for both cases. To test the effect of expansion, Case C with a
larger a = 0.02 is designed. The velocity and pressure distributions of this highly expanded case
are shown in Figure 2, in which an increasing p and a declining u along x can be seen, and a
good agreement of u and the cognizable deviation of p is evident. Case D is used to test the
high contraction flow with a =−0.03 and its results are shown in Figure 3, in which both p and
u increase along x , and the deviation of p is also apparent. It is clear that Case C and Case
D have similar error degrees, namely 10−2 for p2 and 10−5 for u1. To improve the results of
Case D, a smaller viscosity � = 0.3 is chosen and a slight better agreement of p2 is obtained.
The above analysis, along with Figures 2 and 3, suggests that the velocity error is small but the
pressure error is relatively large, and that a, � and u2 do not have a significant effect on error
degrees.
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Figure 2. Velocity and pressure distributions in Case C.

0 5 10 15 20

0.04

0.05

0.06

0.07

0.08

0.09

0.10

u(
x)

x

0 5 10 15 20

1.000

1.002

1.004

1.006

1.008

1.010

1.012

p(x)

u(x)

 Computed
 Analytical

 p(
x)

u2
p

2
p

1

p
1 
and u

2 
are specified

u1

Figure 3. Velocity and pressure distributions in Case D.

Recalling the momentum equations (25) and (30), one may find that the compressibility of the
LBM model is the main reason for pressure deviations. Therefore, in Case F the inlet velocity
is reduced to u2 = 0.01, and thereby a smaller error degree 10−5 of p2 is achieved. To compare
with Figure 2, the results of Case F are drawn in Figure 4, where a much better agreement of p
is evident.

To quantitatively analyse the errors, we define the relative errors for pressure and velocity as
follows:

Err p=
∑

N ,M |p − p∗|∑
N ,M |p∗| , Err u =

∑
N ,M |ux − u∗

x | + |uy − u∗
y |∑

N ,M |u∗
x | + |u∗

y |
(35)
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Figure 4. Velocity and pressure distributions in Case F.
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where p, ux and uy are the lattice pressure, velocity component in the x-direction and velocity
component in the y-direction on the N × M lattice, respectively, and those with asterisk superscripts
are the analytical solutions.

Based on the same parameters as in Case C or Case F, the compressibility effect is analysed
by only reducing the outlet velocity u2. Figure 5 shows the dependence of errors Err u and Err p
on u2. It is clear that Err u does not change, but Err p decreases rapidly as u2 decreases. This is
because the momentum equation (25) has a compressibility error term O(M3), but the continuity
equation (24) does not.
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3.2.2. Convergence order analysis. To analyse the lattice convergence, different lattice numbers
are chosen to simulate a case with the same parameters as in Case A, except for u2 = 0.001.
The smaller u2 is selected specially to eliminate the compressibility effect. Figure 6 shows the
trendlines of error change along lattice resolution, in which second-order convergence rates are
evident for both Err u and Err p, corresponding well to the error term O(�2t ) in Equations (24) and
(25). Because the compressibility error is reduced, the relative error of pressure becomes smaller
than that of velocity. The two errors are extremely small, for instance, when N = 100, Err u and
Err p equal 1.3× 10−7 and 1.8× 10−9, respectively.

From the above analysis, one may conclude that the proposed scheme is accurate for non-uniform
but steady source term problems.

3.3. Unsteady flow

To verify the simulation ability concerning unsteady and non-uniform source terms, a water
hammer case with similar layout to Case F, namely �0 = 1, h1 = 1, h2 = 1.4 and a = 0.02, is
suitably chosen. This example is also typical because its source terms are not only unsteady, but
also non-uniform. Initially the fluid in the duct is still, and after the simulation starts, the pressure
at the inlet holds constant at p1(t) = 1.0, while the velocity at the outlet increases linearly to
0.1 within the first 100 LBM time steps, and remains constant thereafter. In this way, a typical
transient flow governed by Equations (29) and (30) is generated. The characteristics of pressure
wave transmission and reflection are similar to those in the penstocks of hydropower plant after unit
starting.

Model D2Q9 is used on a N × M = 20× 10 lattice. Because no analytical solutions are available,
we adopt the method of characteristics (MOC) in Reference [24] to obtain accurate one-dimensional
numerical results for comparison. To ensure stability of simulations, MOC leaves out the convection
and viscosity terms in the momentum equation (30), and accordingly D2Q9 cancels the convection
term in (25) and uses a very small viscosity � = 0.0001.
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Figure 7. Comparison of outlet pressure histories of LBM and MOC.

The histories of pressures and velocities at the duct inlet and outlet are demonstrated in Figure 7,
from which the very good agreement between the outlet pressure lines of the two methods can be
seen.

The MOC solutions are of high accuracy [24], therefore, the good agreement suggests that the
proposed scheme is also accurate for unsteady and non-uniform source term problems.

4. CONCLUSIONS

This paper proposes a scheme to introduce unsteady and non-uniform source terms into the lattice
Boltzmann model. The idea is described by a theoretical derivation and the accuracy is verified
by typical examples. It is shown that the approach is general, not only for, respectively, treating
the force term in the momentum equation and the source term in the continuity equation, but also
for a synchronous consideration of both. Moreover, the source terms can be unsteady or steady,
and non-uniform or uniform. The second-order convergence feature, which is demonstrated by
both analytical and numerical verifications, accords well with the intrinsical accuracy of LBM.
Though these are achieved by way of adding extra terms to the LBE, it can be easily implemented,
however, by other ways, such as revising the equilibrium functions.
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